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NOME NC LATUR E

= acceleration vector; defined by Eq. (4)

A = transformation matrix; defined by Eq. (52)

...,A1, A2, • A 6 = reference areas; see Eqs. (110) through (115)

(C A, Cy, CN) = (axial, side, normal)force coefficient

(C1, Cm, Cn) = (roll, pitch, yaw) moment coefficient

D = drag

= force vector; see Eq. (7)

F. = force vector acting on element of mass, m i
1

(23 F x, 23 F , 23F ) = total perturbation force acting parallel to vehicle body axesy z

[f (£,t), fy(_,t), fr(£,t)] = force (moment) causing bending (torsion) in (pitch, yaw,
P roll) plane

(FxA , FyA , FZA ) = aerodynamic (axial, side, normal) force; see Eqs. (110) through
(112)

g = gravity acceleration

= moment of external forces about origin of inertial coordinates; see Eq. (16)
O

GS' = moment of external forces about origin of body axis system

= angular momentum defined by Eq. (12)
O

H S ,

(Hx, H , H )y z

(Ixx, Iyy, Izz)

= angular momentum defined by Eq. (13)

= components of HS' in body axis system

= moment of inertia of reduced vehicle (i. e., excluding sloshing

masses) about vehicle body axes

(Ixy , Ixz , Iyz) = product of inertia of reduced vehicle about vehicle body axes

I = moment of inertia of rocket engine about its c. g.
O
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I =

+ 2
= moment of inertia of rocket engine about swivel point; = I ° MR £R

unit matrix

Ir(£) = moment of inertia per unit length of reduced vehicle about longitudinal axis of
vehicle

i, j, k = unit vector triad in body axis system

K(aP), K(Y) = accelerometer gain in (pitch, yaw) plane
a

(KAp,

(gbp,

KAy, KAr) = servoamplifier gain in (pitch, yaw, roll) channel

Kby ) = load torque feedback gain in (pitch, yaw) plane

(Kcp'

(Kip'

Kcy ) = engine servo gain in (pitch, yaw) plane

Kiy, KIr) = integrator gain in (pitch, yaw, roll) channel

(KRp, KRy, KRr) = rate gyro gain in (pitch, yaw, roll) plane

(K, Kfl) = angle of attack meter gain in (pitch, yaw) plane

= length parameter along vehicle longitudinal axis; positive in aft direction

(41' 22' £3 ) = reference lengths; see Eqs. (113) through (115)

a

_A

£
C

m

_R

distance from nose of vehicle to origin of body axis system; see Figure 8

= distance from c.g. of vehicle to accelerometer location; positive forward

= distance from origin of body axis system to engine swivel point; see Figure 8

= distance from c.g. of vehicle to angle of attack sensor; positive forward

= distance from c.g. of rocket engine to engine swivel point; see Figure 7

_ = distance from center of pressure in pitch plane to origin of body axis system;
see Fig. 8

_fl = distance from center of pressure in yaw plane to origin of body axis system;
see Fig. 10

£pi = distance from hinge point of i th pendulum to origin of body axis system;
see Fig. 5

(L A, M A, NA) = aerodynamic (roll, pitch, yaw) moment

Lpi = length of i th pendulum; see Fig. 5
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L = aerodynamic load in pitch plane; defined by Eq. (159)

L_ = aerodynamic load in yaw plane

1

m(£)

element of mass
L

= reduced mass per unit length along vehicle longitudinal axis;] m(_) d_ = m o
0

m ° = reduced mass of vehicle; = Mt - i_ mpi

mpi = mass of i th pendulum

M t = total mass of vehicle

M R

(M (i), M (i), M(i).y r )

(_.Mx, ZMy, ZMz)

(I:',Q, R)

= mass of rocket engine

= generalized mass of i th bending mode in (pitch, yaw, roll) plane

= total perturbation moment along vehicle body axes

= angular velocities defined by Fig. 1 and Eq. (3)

(Po' Qo' Ro) -- steady-state values of (P, Q, R)

(p, q, r) = perturbation values of (P, Q, R)

(_i), q_i), q_i)) = generalized coordinate of ith bending mode in (pitch, yaw, roll)
plane

(Q_), Q(i) (i).' Qr ) = generalized force (moment) of i th bending mode in (pitch, yaw,
Y ro11) plane

s = Laplace operator

t = time

T = control (gimballed) thrust
C

T = ungimballed thrust
S

T = control thrust moment in roll
r

(TEp , TEy ) = engine servo torque in (pitch, yaw) plane
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(Tfp, Try) =

(TLp' TLy) =

T s

W #

gimbal pivot friction torque in (pitch, yaw) plane

load feedback torque in (pitch, yaw) plane

= kinetic energy of pendulum

= kinetic energy of rocket engine

(U, V, W)

(U o, V o , W o)

(u, v, w)

(x, y, z)

(Xcg' Ycg

(Xc' Yc' Zc)

(Xe' Ye' Ze)

(XG' YG' ZG)

= components of velocity vector of origin of body axis system; see Eq. (1)

= steady-state values of (U, V, W)

= components of wind velocity vector in body axis system

= perturbation values of 03, V, W)

= coordinates specifying location of element of mass in body axis system

, Zcg) = coordinates specifying location of c.g. of reduced vehicle relative
to body axis system

= coordinates specifying location of origin of body axis system relative
to inertial space

= coordinates specifying location of engine c.g. relative to inertial space

= coordinates specifying location of engine gimbal point relative to inertial
space

= perturbation angle of attack in pitch plane

rvT = forward acceleration of vehicle; defined by Eq. (131)

= perturbation angle of attack in yaw plane

= perturbation flight path angle; =(_ - e

(6p, 5y) =

(6pc, 5yc )

ga

= pendulum angle in (pitch, yaw) plane

rocket engine deflection angle in (pitch, yaw) plane

= command signal to rocket engine in (pitch, yaw) plane

= relative damping factor for accelerometer

X



(i)
(((pi), _y

(_ep'

(_-Rp'

%=
(O, =

(0c, c, )

(0 a, _ba) =

_P
c

(P pi' Pyi )

_(i), relative damping ratio for ith bending mode in (pitch, yaw, roll)
' r ) =

plane

_ey ) = relative damping ratio for engine servo controller in (pitch, yaw) plane

_Ry' _Rr ) = relative damping coefficient for rate gyro in (pitch, yaw, roll)
plane

relative damping factor for angle of attack sensor

perturbation attitude angle in (pitch, yaw, roll)

= command signal in (pitch, yaw, roll) channel

accelerometer signal in (pitch, yaw) plane

angle of attack signal in (pitch, yaw) plane

(OF, _bF, _F ) = feedback signal in (pitch, yaw, roll) channel

(0PG' _PG' q_PG ) = position gyro signal in (pitch, yaw, roll) channel

(0RG, _)RG' _°RG) = rate gyro signal in (pitch, yaw, roll) channel

= radius vector from origin of inertial reference to origin of body axis system

= velocity vector from origin of inertial reference to origin of body axis system

(_ pi' Pyi ) = velocity vector of i th pendulum in (pitch, yaw) plane relative to inertial
reference

p = control moment coefficient; defined by Eq. (164)
c

p_ = aerodynamic moment coefficient; defined by Eq. (165)

[_p(£,t), _y(£, t), _r (£' t)] = bending (torsion) deflection in (pitch, yaw, roll) plane

p = atmospheric density

= radius vector from element of mass to origin of body axis system

= radius vector from c.g. of reduced mass of vehicle to origin of body axis

system

= radius vector from pendulum to origin of body axis system
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a(i) _(i) _(i)
(p' rUy ,

= negative slope of i th bending mode in (pitch, yaw, roll) plane;

/__¢p!1) -_ ¢p(i) __ ¢p(i)_

k ' ,

(Tp, _y, rr) = time constant of position gyro in (pitch, yaw, roll) channel

(i) _(i) _(i),
(_p , _y , _vr ) = normalized mode shape function for the ith bending (torsion) mode

in the (pitch, yaw, roll) plane

co = undamped natural frequency for accelerometer
a

0_ = undamped natural frequency for angle of attack meter

Ji) U_l)) = frequency of the bending mode in the (pitch,J, undampednatural i th
p' y'

yaw, roll) plane

(coep' Wey) = undamped natural frequency of the engine servo controller in the
(pitch, yaw) plane

(coRp' WRy' coRr ) = undamped natural frequency of the rate gyro in the (pitch, yaw,
roll) plane

(copi' Wyi) = undamped natural frequency of the i th pendulum in the (pitch, yaw)
plane

m

co = velocity vector of body axis coordinate frame relative to inertial space

( )=

(')

( )o

a vector

= derivative with respect to time in local coordinate frame

= steady-state value
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I. INTRODUCTION

The performance quality of a space launch vehicle during the launch phase of

flight is generally studied in two distinct, though related, phases. The first deals

with the trajectory of the vehicle with reference to some specified inertial frame and

is concerned with such factors as payload capacity, dispersions from nominal, and

orbit capability. Dispersion of the actual from nominal trajectory due to such factors

as parameter uncertainty and random loads is generally referred to as '_ong period

dynamics. " In this context, the vehicle is usually assumed to be a point mass and the

oscillations about the nominal trajectory have a 'long" period. However, the action

of the control system in orienting the vehicle is not instantaneous. Oscillations about

the vehicle center of mass are induced and these must be damped out if the mission

is to be successful. These oscillations have a comparatively short period and the

study of these motions constitutes the subject matter of the vehicle "short period

dynamics. "

As is well known, a meaningful investigation of the stability and performance

quality of the vehicle autopilot requires that one take account of a multitude of factors

which are known to have a significant influence. To effectively analyze the complex

system which this approach entails, one adopts the classical method of studying the

perturbations from nominal; this results in a linear system for which powerful analyti-

cal tools are available.

In this monograph, these so-called perturbationequations will be derived taking

account of such factors as c.g. (center of gravity) eccentricity, bending, propellant

sloshing, and engine inertia. The derivation will proceed from first principles, so

that by suitable modifications in the development, special equations emphasizing certain

facets of the problem may be obtained. Also, various effects may be either included

or eliminated depending on particular study requirements.

A brief mention should be made of the coordinate axes adopted. Analysis of mis-

sile systems conventionally employs body axes rather than the "stability axes" which

are commonly used in aircraft. Among the reasons for this preference is that the aero-

dynamic stability derivatives for missiles and space launch vehicles are obtained both

experimentally and analytically via body axes. Furthermore, a space launch vehicle

is not a lift body in the usual sense of the word. The steady-state angle of attack is

generally zero; hence there is little to be gained by using stability axes.

It should also be emphasized that the equations developed here are valid only for

short time periods -- on the order of a few seconds. Vehicle properties such as mass,

c.g. location, and moment of inertia are assumed constant in this interval. Since

these quantities vary slowly compared with control system time constants, this approxi-

mation is generally valid.

1



2. STATE OF THE ART

The present methods of stability and control analysis of aerospace vehicles are

an extension of the techniques first used by Lanchester (3) and Bryan (4) shortly after

the turn of the century. Although these investigators were concerned mainly with

aircraft and gliders, their general approach, which was essentially the classical method

of perturbations about a reference condition, is still used widely today. This is of

course due to the fact that a general description of the motion of an airplane (or an

aerospace vehicle) is highly complex, containing many nonlinear terms and intractable

functions, such that closed-form solutions are impossible.

In applying this general approach to launch vehicles, further complications are

introduced because of the fact that the vehicle mass varies with time. Also, since

the control system for the vehicle is closed loop (whereas a pilot flying an airplane is

essentially open loop), various other factors (such as influence of flexibility on the con-

trol system) must be considered.

In spite of this, the general approach is still essentially the same; the stability

and control problem is analyzed via perturbation techniques. However, the period

during which the resulting equations are valid is short, since constant mass and in-

ertial properties are assumed during this interval. This raises some subtle questions

on the legitimacy of the scheme since there is no strict mathematical assurance that

stability in the "time-slice" sense is equivalent to stability in the time-varying case.

Making use of some recent results in nonlinear theory, a partial answer to this ques-

tion is given in the monograph "Nonlinear Systems", which constitutes part 2 of

Vol. H in the present series of monographs.

While further developments in nonlinear theory may add fresh insight to the

problem, the techniques discussed in this monograph are basic and yield results which

are of fundamental importance in the design of control systems for aerospace vehicles.



3. RECOMMENDED PROCEDURES

The derivation of the equations of motion of a space launch vehicle -- including

the effects of elasticity, fuel sloshing, and engine inertia -- may be approached in two

ways. In one sense, it might appear simpler in principle to apply Newton's laws

directly to the entire vehicle, incorporating all the necessary degrees of freedom,

thereby obtaining a set of equations in which all the necessary elastic and inertial

coupling terms appear automatically. This approach has two drawbacks. First, a

degree of physical insight is lost in the mathematical manipulations. Second, and more

important, the elastic modes would have to be computed with the sloshing propellants

and engine masses included. This is a more difficult task than computing the free-

free body modes alone.

Accordingly, we will take an alternate approach which involves the derivation

of artificially Uncoupled motions in which the coupling terms will appear via appro-

priately introduced mathematical constraints

3. 1 RIGID BODY EQUATIONS

The rigid body equations of motion will be derived to take account of the situa-

tion where the geometric center and the mass center do not coincide. A right-hand

coordinate system, X' Y' Z', is fixed to the vehicle such that the origin is located at

the vehicle geometric center (Fig. 1). The motion will be described with reference to

an inertial coordinate system, XYZ. For brevity, we shall refer to the inertial and

body coordinate systems as S and S' respectively.

For present purposes, it is not necessai_y to define the inertial frame explicitly.

It is usually convenient to think of the inertial reference as earth-centered with the

axes suitably oriented with respect to some stellar reference. However, the inertial

frame may also be taken with the origin at the launch site with one axis directed along

the local vertical of the launch site. "This selection is sufficiently accurate since the

flight time associated with the launch phase is on the order of a few minutes, and the

earth's rotation is negligible for this interval. Since we are not at the moment con-

cerned with the position and velocity of the vehicle with respect to a specific reference,

the precise orientation of the inertial frame may be left undefined. However, for pur-

poses of trajectory analysis, the appropriate reference frames must be specified pre-

cisely. This is done in the monograph on "Trajectory Equations, " which constitutes

part 3 of Vol. I in the present series.

We may now express the velocity of an element of mass by

-- =

3
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POSITIVE SIGN

CONVENTION

W

X' Z' is the pitch plane

X' Y' is the yaw plane
'I

X

Z T

Figure 1. Vehicle Coordinate System



where _ is the velocity of the origin of S t ; p is the r_dius vector from the element of

mass to the origin of St; and _is the angular velocity of S °. We have*

_ -- u_+v_+w_ (1)

= x_ +y_ +z_ (2)

_ = P_+Qj+Rk (3)

The acceleration of the element of mass is therefore

5_
- dtd_ _xdp+d_0__ _d_._x_ =5____5_+_x/2+_ox (_x_)+__x_ (4)

where**

5fi .-"
6t = Ui +V] +_Vl_ (5)

-- = Pi +QI +ilk
8t

(6)

The equation of motion of the vehicle is

Now

i:- i°I- 1= + _x_+ _x _ +_- x(_x _) dm
5t

1°° I s ]m + _ x_ +_x _dm + _x -_ x _dm
o [ at 5t

S_ - mdm= Pc o

(7)

(8)

where Pc is the radius vector from the mass center to the origin of S v.
center coincides with this origin, Pc = 0, and Eq. (7) reduces to

}F = m +_x_
0

If the mass

(9)

* "{, j, _ denotes a unit vector triad in the S' frame.

5

** 5--t( ) denotes time derivative with respect to body frame.



Noting that

Pc = Xcg _ + YcgJ + Zcg k (10)

we have on integrating Eq. 7 over the entire vehicle

--IF= m ° (I]+QW-RV)-m Xo cg(Q2+R2)-moYcg(R-l:K_)+m Zo cg(Q+PR)I i

+[mo(_7+RU-PW)+m Xo cg(R+PQ)-moYcg(p2+R2)-m Zo cg(i_-QR)l J

+/me (_+FL Pv -QU) -mx o eg (Q - PR)+ moYcg (P + QR) -moZcg (P2 + Q2)]_j_:

(11)

We need an expression for the rate of change of angular momentum about a

moving point. We derive this as follows. Let a particle of mass "mi" have a radius

Vector "Pi" with respect tea moving point S', and let the radius vector from S' to a

fixed point O be denoted by k. Then the angular momentum about the fixed point O is

]

x[ - ]= _x_ +k x + Pix X + PiX pi m.1 (127
1

Putting

we have

HS' = _<Pi X _i)mi

;--IO = _i [_× _+ k× _-_+ _i×-k]mi+Hs ,

(13)

(14)

Now

m

dH

o - ---::--. = x _ + k x
clt

Noting that

X×
._I._"

_=0

to * E

k+ )_X _i+_ X _i+_i

dH S ,

- +x X +P-i x mi dt

6



m

).xP+PixX = o

_m._ =m_
i I i o e

we obtain

o_ X x(_+ _'i) m.+ x X +dt 1 moPe dt
i

m

Denoting by G o the moment of the external forces about O, we have

_- ×
0 I I I

i i

where F--i is the force acting on the particle of mass m i .

Writing

i

(15)

(16)

(17)

Eq. (16) becomes

i

But
m

dH

=--£
o dt

(18)

(19)

Hence, combining Eqs. (15) and (18) yields

T 1 i 0 C
i i

However

= mi( X + _i )
i i

*...2-"

X _.+_

dH S ,

dt
(20)

(21)

so that

dHs! _

GS, - +m p xdt o c
(22)



This is the relation sought.

Eq. (22) may be expressed in the form

d/ --GS' - dt _-x _dm+mo _-c × )%

where, in the problem under consideration

p=_oxp

X = -fi

• d_
-

dt

(23)

We may write therefore

x d_
x (_ x _)] dm+m _o e dt

(24)

The expression for the angular momentum about S' is

HS' =f[_x (_x#)] dm

2= [_p -_(_. _)] dm

In components,

H = I P -I Q -I R
x xx xy xz

H =-I P+I Q -I R
y xy yy yz

H =-I P-I Q+I R
z xz yz zz

where

2 z 2)I = (y + dm
XX

I = /xydm
xy

I = f (x 2 + z 2) dm
YY

/Iz yzdm

2 y2)I = (x + dm
ZZ

I =fxzdm
XZ

(25)

8



Noting that

Hs' = H T+H T+H ]_x y z

we have on differentiation

dH S,

dt

dH dH dH

x T+___yT + z _ +H
dt dt dt x

dT +H d¢+i H dk

dt y dt z dt

= (fIxi"+fIy _-+I_Izk)+_x'HS'

We obtain finally

1

+ moYg-c (%_V+ PV-QU) - moZcg (_r+ RU- PW) ,lT"

+[ -Iy(P+QR)+Iyy(_ -I z (lt-PQ). +Ixz (p2-R2)+(Ixx-Izz } PR

!

-m x (W--+ PV -QU) + m z (U-+ QW -RV)]-J
o cg o cg J

+ m x (_r+ RU - PW) -rnoYcg(U+ QW-RV)]o cg

(26)

(27)

Eqs. (11) and (27) completely describe the motion.

In order to study the stability of the short period motion, assume that the

components of linear and angular velocity may be expressed as the sum of a steady-

state value and disturbance component as follows:

U = U +u P = P +p
0 0

V = V +v Q = Q +q
O O

W=W +w R =R +r
O O

(28)



The components of the airspeed resolved along body axes are

U-U
W

V-V
W

W-W
W

We now assume that the quantities V, W, u, v, w, Uw, Vw, and Ww are small compared
to U o. Defining

where

W

U + (_ (29)W
O

V

- u + t3w (30)
O

W
W

0t - (31)w U
O

V
_-- W

_w -_-" (32)
O

and substituting Eqs. (29) and (30) into (11) and (27), we find, after eliminating steady-

state and higher order terms,

EF = m [d-V r+W q+U (Qo_-R fl)]
X 0 0 0 0 0

EF
Y

-2m x (Qoq+Ror) -o cg moYcg (P Po q - Qo p)

+m z (_+ 1a r+RoP)o cg o

= m [_+R u+U r-WoP-P U q],O O O O O

+m x (_+ +Qo p) -2 R r)o cg Po q moYcg (Pop + o

-m z (I_-Q r-R q)
o cg o o

(33)

(34)

10



_.Fz = mo [@ +vop- Qou-Uoq+ PoUo fl]

EM
X

_.M
Z

- moXcg (di- Por - Ro p) + moYcg (l_+ Qor + Ro q)

- 2 m z (P p + Qoq) (35)o eg o

Ixxl$+ (Izz - Iyy) (Qo r + Ro q) - Ixy (q - por - Ro p)

-I (_+ P q+Q p) -2I (R r- Qo q)
XZ O O yZ O

u-U q+P U fl)
+ moYcg (_v+ VoP - Qo o o o

-m z (_+R u+U r-WoP-P U _)o og o o o o

(Ixx - Izz) (Por + RoP) + Iyy cl- Ixy (I_+ Qo r + Ro q)

- Iyz (_- Po q-Qo p) +2 Ixz (Po p-Ror)

-m x (_+ Q u + P U fl)
o eg VoP- o -Uoq o o

+ m z [d-V r + + U ° (QoO_ )]o cg o Woq - Rof_

(:yy- Ixx) (P q + Qop)+Io zz _ Ixz (15- Q r - Rq)o o

- Iz ((l+ Por+RoP) + 2 Ixy(Qo q-Po p)

+m x

o cg (_+R u+U r-WoP-P U _)
O O O O

- moYcg [d -Vor + Woq + U ° (Qo _ -Ro fl) ] (38)

(36)

(37)

The external forces and moments in the above equations are due to gravity,

thrust, aerodynamics, propellant sloshing, and engine inertia. We write these as

follows (resolved along body axes).

EF = F + FxT + F + F + Fx xg xa xs xE (39)

2;F = F + Fy T+ F + F + Fy yg ya ys yE (40)

11



F = F + FzT+ F + F + F (41)z zg za zs zE

_M = M + MT+ M + M +xa xs MxE
X xg

(42)

EM = M +M +M +M +M
y yg yT ya ys yE

(43)

_.M = M + MzT+ M + M + MzEz zg za zs
(44)

Since V o, W o, Po, Q-, and R o are small quantities, of the same order of magnitudeo
as the perturbation variables, Eqs. (33) through (38) reduce to

EF = m (d _+z _) (45)
x o - Ycg cg

EF = m (4+Ur+x _-z _) (46)
y o o cg cg

_.F = m (_-Uoq +z o - Xcg _ yc_ ) (47)

E xM = xIx _ - xyI _ - xIz _ + moYcg_ (_ - Uo q) - moZcg (v + Uor) (48)

= _- 1_- z o cg o cg

E Mz = Izz _ - Iz _ - Iyz _ + moXcg (v + Uor) - moYcg d (50)

i

3. 1.1 Euler Angles

I
Let S o denote the vehicle body axes in the steady-state condition. The dis-

turbed orientation, S', is then related to S o by three Euler angles --_b, 8, q_ -- defined
as follows.

I

a. Rotate S O about the Z' axis by an angle _b in the positive direction*

b. Then rotate about the Y' axis by an angle 8 in the positive direction

c. Finally, rotate about the X' axis by an angle _ in the positive direction.

i S IThis brings SO into . W e then have**

S' = A S 0 (51)

*Positive direction is determined by the usual right-hand rule.

**We will let S t denote either the body axis frame itself or some vector in S _ (similarly

for So). This should cause no confusion since the meaning will be clear from the
context.

12



where A is the transformation matrix given by *

A E1°°lice°se1= 0 cgO sgo 0 1 0

0 -s%o cgo s0 0 c0
Eco1-s¢ c¢ o

0 0 1

or

A

c0 c¢
= sgo s0 c¢ - c_o s¢

c_ s0 c¢ + sgo s¢

ce s¢

s_o se s¢ + c_o c¢

c_o se s¢ - sgo c¢
sojsgo cO

cq_ cO (52)

Note that A T = A -1. By direct resolution of vectors, we find that the components of

angular velocity in the S' frame are given by

= ¢- _ sm 0 (53)
X

¢_ = 0 cos ga+ ¢cosO sin q_ (54)
y _

¢o = ¢ cos 0 cos _a- _ sin _a (55)
Z

We now assume that the quantities ¢, 0 , q_, and ¢, 0, _ are small, so that the above

equations reduce to

-0

A = -' _b 1 (56)

0 -ga

¢o
X

¢o
Y

(D
Z

=_=p

=_=q

= 5 = r (57)

*Occasionally, we will write sO for sin 0, cO for cos 0, etc., for brevity.
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3.2 EQUATIONS OF ELASTIC VIBRATIONS

The equations of motion for the forced vibrations of a free-free elastic

vehicle are developed in the monograph entitled, "Elastic Body Equations," which is

part 2 of Vol. I in this series. Only the main results are summarized here for a

complete description of the short period dynamics of the vehicle. A schematic of the

The elastic de-deflected shape of the vehicle in the pitch plane is shown in Fig. 2.

flection at any point along the vehicle is given by

oO

_p (_,t) = _, q(i) (t) _(i) (_)
x 1 p q_P

(58)

Here 7_ i) (_) denotes the normalized mode shape of the ith mode in the pitch plane and

is a function only of the beam stiffness and mass distribution, q(pi)(t) is the generalized
coordinate due to elasticity, for the i th mode in the pitch plane. It satisfies the

equation

[ ]_(i) + 2 _(i)¢_(i) _..(i) + _(i) 2 q(i) = ._.p_.p (59)

qp . p P qp p P M(i)
P

where Q(pi) and_ i) are the generalized force and mass, respectively, and are given by*

L

Q(i) q(pi)P =f fp(.t,t) (.t) d.t
0

= m(.t ) (.t)
P O. P

(60)

d _ (61)

pi .thand _ ) represents the natural frequency of the 1 mode.

The forced vibration equations for the yaw plane are completely analogous in

form to those of the pitch plane; viz. (see Fig. 3)

1=1

_(i) +2 _) (i) _(i) + [ (i)] 2 _(i)y ¢_y y _y J qY

(62)

Q(i)
_ Y

M(i)
Y

(63)

* A thorough discussion of the quantities contained in these equations may be found in
the monograph on Elastic Body Equations referred to above.
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L

Q(i) = / f (_,t) go(i)(9)d_ (64)
Y Y Y

0

L 2

M (i) = / m(£) [go_) (£)] d_ (65)Y
0

The torsional vibration modes about the longitudinal axis may also be written

in a form analogous to the above.

cO

_r (£' t) = _ q(i) (t) go(i) (£) (66)
r r

i=l

_(i) + 2 _(ri) _(i) ..(i)+ ) 2 _.(i)_ r (67)
r r qr qr M(i)

r

L

Q(i) = f fr (_' t) go(i) (_)d_ (68)
r r

0

= I (£) d£ (69)
r . r r

0

The modal slopes are defined in the following manner

a}p (£,t) _ _ q(i) (t) a_(pi) (£)
a_ . p a_

1

= _ _ q(i) (t) _(i)(_) (70)
P P

i

with similar expressions for yaw and roll.

As has been pointed out earlier, the equations of motion for the complete sys-

tem are derived on the basis of artificially uncoupling the modes. This means that the

coupling between these orthogonal modes arises only through a dependency of the ex-

ternal forces upon the motions themselves. Furthermore, in writing the equations of

motion for each of these modes (sloshing, elasticity, engine inertia, etc.), the forcing

functions must include inertia forces (in the sense of D'Alembert) in some appropriate

manner.
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We turn nowto a description of these forces.

3.3 FORCES AND MOMENTS

The forces and moments to be derived in this section are essentially as listed

in Eqs. (39) through (44) and denote perturbations from the steady-state condition.

These quantities when combined with the equations of motion and the autopilot feedback

loops will yield a complete description of the short period dynamics of the vehicle.

3.3.1 Gravity

We assume that in the steady state, the vehicle configuration is as shown in

Fig. 4 where _2o = _Po = 0. In this case, the force of gravity resolved along the body
axes is

F (°) = -M gcos 8°
xg t

F (°) = 0
Yg

F (°) = -N[ tg sin e°zg

We may use Eq. (51) to obtain the components of the gravity force vector

along the body axes in the disturbed condition. However we write

F -cos e
xg o

F = (A-I) 0
Yg

F -sin 0
zg o

m

Mtg

to ensure the removal of the steady-state components. We use the transformation

matrix given by Eq. (56) and let I denote the unit matrix. Expanding

Fxg M t g 8 sin 00
(71)

F = Mtg(_cos e - _sine o)yg o
(72)

Fzg - g 8 cos e O
(73)

18
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Figure 4. Gravity Force in the Steady-State Condition, Pitch Plane
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Because the vehicle c°g° is displaced relative to the geometric center, there
will be moments due to gravity about the body axes. In the steady-state position, these
moments are

M(°) sin 0
• xg = -Nit g Ycg o

M (°) = M tg(x sin 0 -z cos 0o)
yg cg o cg

M (°) cos 0
zg = Nit g Ycg o

The compOnents of the perturbation moments resolved along body axes in the

disturbed condition may be computed from

I Mxg

M
Yg

Mzg

(A-l)

sin 0
-Ycg o

x sin 0 - z cos 0
cg o cg o

Ycg cos 0o

Mtg

or

= - - z _ cos 0 o)Mxg M t g (Xcg _ sin 0 ° Ycg 0 cos 0 ° cg
(74)

M = _M'g Ycg ( q_c°s 0 + _sin0 o)yg o
(75)

= (-Ycg - 0o)Mzg Mtg 0sin 0o Xcg_Sin0o +zcg _cos
(76)

3.3.2 Thrust

The perturbation thrust forces and moments listed in Eqs. (39) through (44)

may be obtained from Figs. 2 and 3 by direct resolution of vectors and the elimination

of steady-state components. The final result is

FxT _ 0 (77)

since there is negligible perturbation of motion in the longitudinal direction.

Fy T = Tc 6y-(T c +Ts ) _. qy-(i) (t) _(i)y (£T) (78)
1

*By definition, q(i)(_) = _ 0_ " (See list of symbols.)
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FzT = T c 5p-(T c + Ts) _, q(i) (t) cr(i) (IT )
i P P

_ (i) _(i)(£ ]MyT = £c Tc6p-(Tc+Ts) I__.qp (t) P T )
I

-(T + TS)_. q(i) (t) _o(i)(_T)
c . p p

I

1

(79)

(80)

+ (Tc + Ts) .'r_q(i)y(t)¢(i)y(_T) (81)
1

For roll control, we assume that separate roll control engines are available

which produce a torque proportional to some signal _r' which in turn is a function of

the perturbation roll angle, _0. We have therefore

MxT = Tr6r (82)

3.3.3 Sloshing

It is well known that the dynamic effects of a sloshing liquid can be closely

approximated by replacing the liquid mass with a rigid mass plus a harmonic oscillator

(spring mass or pendulum). The pendulum parameters are a function of tank shape,

liquid level, etc. 1Ref. 2 contains a detailed discussion of this so-called, "hydro-

dynamic analogy" together with an extensive bibliography° For present purposes,

assume that these pendulum parameters (mass, length, hinge point location) are given,

and we now seek to derive the equation of motion of the ith pendulum° Following this,

we will obtain the forces and moments, due to sloshing, which act on the vehicle. We

consider the schematic of the i th pendulum, shown in Fig° 5. The velocity of this

pendulum relative to inertial space is given by

"_ =_+
pi dt

dppi

+.m===.mm_

6t
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Figure 5. Schematic of Sloshing Pendulum, Pitch Plane
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Here

= Qj

= uT+w_

and

where _pi stands for _p (_pi' t)

Carrying out the indicated operations, we find

The kinetic energy is

r !

1

__ • --= 2 i Ppi /_pi

There is no potential energy since the system is in free fall. Denoting the kinetic

potential by L' {= T'), the equation of motion expressed in Lagrangian form is

d {SL' h 8L' -0

After performing the indicated operations and assuming that Fpi and Fui are
small quantities, we find

rpi + Z-- rpi - L--
pi pi

["_ -UQ -I_ (_pi - %i ) + _'pi ]

Now put

2 6
_pi L

pi

W = W +W
O

23



Q =Q +q
0

U = U +u
o

and noting that Wo = Qo = 0, we obtain after subtracting out the steady-state components

o pi - qp p p

The equation of motion of the ith pendulum in the yaw plane is obtained in

analogous fashion using the schematic of Fig. 6. The final result is

[ ]yi Fyi Lpi -Uo _- _-¢'(_pi-Lpi)- qy y
(84)

The sloshing forces and moments now appear as

F -_ 0
xs

Fy s = i_ lVIpil_ 0

(85)

F . (86)
yl

zs pi o
i

F . (87)
px

M = 0
xs

M M.t r.
ys i pl pi o px

zs pi pi o yi
i

(88)

• (89)

(9O)

It has been assumed that there are no sloshing effects about the roll axis.

3.3.4 Engine Inertia

The equation of motion of the rocket engine is best obtained using the

Lagrangian formulation. Referring to Fig° 7, we find that the location of the engine c° g.

relativeto inertial space is given by

[ 5 5 8_ (_t)]p T'Xe = XG- £RC°S + - 0 - 0 + (91)po p o 8£

24
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Figure 6. Schematic of Sloshing Pendulum, Yaw Plane
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8_ t) 1Ze = ZG- £R sin 5po+ 5 - 0 - 0+ P (£T'
p o "8_i

(92)

The location of the origin of the vehicle body axes relative to inertial space

may be obtained with reference to Fig. 7; viz.

X = XG+ £ cos(0 +0)+ p_- sin(0 + 0)c c o T o
(93)

Z = ZG+ £ sin (0 + 0) - _ cos (0 + 0)c c o pT o
(94)

Here _ pT stands for _ p (£ T' t).

Substituting Eqs. (93) and (94) into (91) and (92), we find

/
X =X -£ cos (0 + 0) - _pT sin (0 o+0) -£RC°S \(5 + 5 - 0e e c o po p o

/
Ze=Zc - £c sin(0o+0)+ _pTC°S(0o+0)-£RsinkSpo+5\ P-0o - 0+

Differentiating with respect to time yields

_ I_= +£ _ sin(0 + 0) - _pT _ cos(0 + 0)- _ sin(0 +O)e c e o o pT o

£R - _ + sin 5po+ 5 - 0 - 0 + ..+
p o

-0

(95)

= Z - £ 0 COS (0 +0) - _pT _ Sin(0 + 0) ÷ _pT cos (0 + 0)e c c o o o

8 _pT

- £R 5p- _ + 8£8t cos 5po+ 5 - 0o - 0 + 8£ /
(96)

The kinetic energy is

1 [ 2

= L :XeTtt ] (  2)2• _pT

e 2 Io p 8£8t
(97)
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There is no potential energy. The equations of motion then take ,the form

d (ST" _ aT" (o)
(98)

d /ST"\ ST" _ F(o)

dt _O--_-c ) 8Zc zE

(99)

The generalized forces in the above equations are exerted on the engine by the vehicle

and are in the direction of positive X c and Yc respectively.

To keep the engine equations reasonably tractable, it will be assumed that the

steady-state pitch angle, 0 o, is also a small quantity. This means that the inertial

axis, X, is vertical, and that during the range of validity of the perturbation equations

here developed, the vehicle is rising ve_ically. (See Fig. 4.)

Using Eq. (97) and performing the operations indicated in (98) and (99), we

find after eliminating steady-state and higher order terms

F (I)
xE = MRU

F (i) [,_ ..
= Ym OoO-

L
Here we have made use of the relations

+  pT-

lJ= Xc cos (8 o+ e) - Zo sin (O o+ O)

v¢ =/_c sin (o ° + o)+ gc cos (Oo + o)

which for small O and 0, reduce to
O

0 = Xc -&'e (°o+°) (zoo)

_¢ = _ (o +o)+#:
C O c

(101)

The forces exerted by the engine on the vehicle now become

FxE

F
zE

(i) cos + 8) - F(1) sin (0 + 0)]FxE (0 o zE o
J

=-[ F(i)XEsin(0 +0)+F(1)o zE cos (0o+O)]

28



or, since 0 and 0 are small
0

F E = -MR5

FzE = MR I _R p c - _R ) - o

(lO2)

(103)

We have also

d / 3T" \ ST" = M(O) 0G,) y=a_p
(104)

Carrying out the indicated operations, while making use of Eqs. (97), (100),

and (101), results in

M(1) =
yE

÷h(

8_pT ) .. ]
5+ _v+_ _'- _
p 8_ c pT

(lO5)

after dropping steady-state and higher order terms.

(i)
The quantity My E represents an external torque applied to the engine. This

torque is generally supplied by a hydraulic servo actuator. The result is that a total

torque of magnitude (M_ + FzE _ c) is applied to the vehicle in the positive 0 direction

due to engine inertia forces; viz.

lVIyE = (IR+MRJ_R_c)_'p+MR_R UoSp-(IR-MR _2)b'c

i

+ (i) (_ _c ) or(i) (_T) ] ,,(i)- _. iVIR(_R _c) q_p T)+(h+MR_R p qp
1

(lO6)
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Proceeding in completely analogous fashion, and using Fig.

the yaw plane

Fy_ -- MR I_R _'y+ (_o+_R5_"-*-_o ¢

_[(i5 _(i5 ] ..(i5/+ . [_y (_T 5 + _R (_y T5 qy

8, we find that in

(107)

The engine inertia torque is

M(1) = + 3'_ } -v+ _ _" + _yTzE MR £R lJo y c

a3_y T )+ !R 6"y+ _" + 3£ _t 2
(1085

The total torque applied to the vehicle in a positive ¢ direction due to the

(15 + .t c); or in expanded formengine inertia forces is - (MzE FzE

[MzE - (IR+MR _Rnc) 6"y RUo y c= -M R _ - io+ _ (n + nR) _;

+ :_,(nR+nc5 ¢ + :_p.,nC O +MR_R,_° (7(i5(_ T) _i)
Y

i

[MR(£R+_c) (p(i5 (£T)_(IR +MR£R£c ) c_(i)(£T) ] ..(i)i Y ,-ly

(lO9)

3.3.5 Aerodynamics

In developing the forces and moments due to aerodynamic loads, the results

of quasi-steady-state aerodynamic theory will be employed. This approach is valid

for low frequencies of oscillation, which is the case for large booster vehicles.

The forces and moments are expressed in the usual manner as follows.

1 u 2Axial Force: FXA = _ p A 1 C A (1105

1 U 2 Cy (111)Side Force: FyA = -_ p A 2

3O
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Normal Force: (112)

Rolling Moment:

1 U 2
FZA = _- P A 3 C N

1 U 2
LA = -2 P A4 _i C1

1

Pitching Moment: M A =

Yawing Moment:

U 2 C
P A5 £2 m

1 U 2
NA = -2P A6 _3 C n

(113)

(114)

(115)

Here the A i and £i represent reference areas and lengths respectively.
assumed that V and W are small compared to U such that

1/2
(U 2 + V 2 + W 2) _ U

R has been

It is often convenient to express the pitching and yawing moments in terms of

normal and side forces as follows.

1 U 2
M A = -_ p A 3 _ C N (116)

1 U 2
N A = -_ p A 2 _ Cy (i17)

We now assume that each of the C coefficients in Eqs. (110) through (117) is a

function of the variables, _, _ , _, _, p, q, and r, and that this C function may be ex-

panded in a Taylor series about some steady-state condition. The general expression

for any C A , whereA stands for A, Y, N, 1, m, orn, is

C A = CAo + CA_ +-.E-v &+2U CA_ 2U CA_ _

V V P

--2U CAp zu CA CAr
+ p +--_-+. q+-- r

q 2U
(118)

CA o represents the value of C A

aC A
C = etc.
As 8_

in the steady state while

The subscript u on _ equals 1, 2, or 3 corresponding to A equals 1, m, or n.
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It is further assumed that the coefficients C_ c_, Cxfl , etc. (which correspond
to the usual stability derivatives) are independent of the variables, _, fl, &, fl, p, q,

and r. The truncation of the Taylor expansion (118) implies that these variables are

small quantities. There may indeed be other terms of the form

V A

etc.2--6 f,
f f

in the expansion (118) ff aerodynamic control surfaces are present; 6f denotes the

deflection of this control surface.

Unlike the subsonic case, the above stability derivatives are a function of

Mach number for transonic and supersonic speeds.

Of the 48 stability derivatives appearing in the general expression (118) for

C_,, many vanish due to symmetry of the vehicle. Furthermore, for large booster
vehicles having little or no lifting surfaces, the damping derivatives are negligible,

and the only stability derivatives of significance are CN_ and Cyfl. In the case of long

slender configurations, these are generally a function of position along the vehicle and

we therefore write CN_(_) and Cyfl (_) to emphasize this fact.

Consider now the perturbation component of the normal force. We have

5FzA 1 U 2 r L 8CN (_)
AFzA = _ • _ =_p A 3 J _' d_ (119)

0 8_

where*
(_a-_) . 8_p(£,t) _ (_,t)

_' = o_ _ P +_ (120)
U 8_ U w

In this formulation we take account of rigid body rotation and aerodynamic damping

resulting from angle of attack caused by local vehicle velocities normal to the aero-

dynamic velocity vector; the influence of vehicle elasticity results in similar effects

yielding the last two terms of Eq. (120).

In accordance with common practice, we assume that FZA acts in the negatiw_

Z' direction, and that FXA acts in the negative X' direction. The latter is simply the

aerodynamic drag which is essentially independent of perturbations in pitch and yaw.

Substituting Eq. (120) into (119) and making use of Eqs. (58) and (70), we find

* cx is defined by Eq. (31).
W
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F
za 2 p A3 (_Ot

L 8CN(_ )

d_-U f 8o_
0

Similarly

(_
a

.(i)

f: ocN(_) (i)(.)d._- (t)j:+ q(i) (t) _ qp
i P _ _p vi

5FyA i rL 8Cy (_)

5_ " fl = "2"P U2A2 J0 8fl
/_' d£

-£) d._

dj
(121)

(122)

where*

(_ -£) Or2 (_, t) _ (£, t)

fl, =fl a y y +u _ a_ u _w (123)

So that

F
ya pU2A2 fl _ d£ - f0 _ (_a

-£)d£

+ .(i) _. jqy(i) (t) f: acY(_)-(i)''_-#_y (.) d£ - i_ qY (r' /: 8CY(£) q,(i) (£)d£_ _ Y
i

(124)

The perturbation moments in pitch and yaw may be expressed as

1 U 2 /L 8C N (_)

MA = 2" P A3 J0 8or (ta
-_) oz' di (125)

1 U 2 L 8Cy(£)NA =_" A2 f ao (_a
0

-£ ) fl'd_ (126)

* ,8 w is defined by Eq. (32).
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Using Eqs. (120) and (123), we obtain for the perturbation moments acting on

the vehicle

i)(t) L 8 CN(_ ) ]+ _i q(pi)(t)f0 L 8CN(') "(Pi)(' d -_i f0_ (la-t) ) i _ _ (_a-t)_P(i)'t)di• P (

M =1 (ta - t ) dt U fl (t -t dza 2 p fl 8fl --- 8 a

(127)

.,t? ]• y t/ _ (la-t) O'y (l)di- . _- 0 -_- (_a-l)gOy (._) dt

(128)

For the case of a long slender booster vehicle, the aerodynamic perturbation

torque in roll is of negligible magnitude. We have therefore

M _ 0 (129)
xa

and also

F _ 0 (130)
xa

3.4 COMPLETE EQUATIONS OF PERTURBED MOTION

In collecting and summarizing the results obtained thus far, it becomes evi-

dent, because of the assumptions made, that the forward motion of the vehicle remains

essentially unaffected by small perturbations. Accordingly, we may write for the

forward acceleration of the origin of the vehicle body axes

T O + T s - D

(XT = <__ _- lVipi _ I_0
i

(131)
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When the vehicle center of mass coincides with the origin of these body axes,
then Eq. (131) in fact represents the acceleration of the mass center. Otherwise, in

the steady-state condition, the thrust vector passes through the mass center, which

means that Xro and X_/o have nonzero values.

With these observations we drop the equations of motion in the X' direction

from further consideration.

The complete equations of perturbed motion may now be summarized as follows.

From Eqs. (46) through (50), making use of Eqs. (37), (38), and (57),

Rigid Body

- Y U _ -x _ +z _" (132)U m o cg cg
O o

z + U e + b" _" (133)
U m o Xcg - Ycg

O O

Ixx_" -- XM +I b" +I _" =m U (& =fi)x xy xz o Ycg o

+m z u ($+_) (134)
o cg o

I "d =XM +I _'+I _" +m x U (&-b) (135)yy y xy z o cg o

I _" =ZM + Iz_3 + I 0" -m x U (fl+_) (136)zz z yz o cg o

In the above equations, the quantities ZF and _M are obtained from Eqs. (40) through

(44) where the terms on the right-hand side of the latter are computed in Sec. 2.3.

The elastic body degrees of freedom in the pitch, yaw, and roll planes are

obtained directly from Eqs. (59), (63), and (67); viz.

Elastic Body

_(i) + 2 L (i) co(i) _i)P P P
+

Q(i)

(i) 2 _(i) p
tOp qp - M(i)

P

(137)
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[ Q'i'..(i) + 2 _ (i) c0(i) _(i) + co (i) 2 ) - Y (138)

qy y Y Y Y M(i)
Y

..(i)+ 2 _(i)co(i) .(i) + w ) 2 q(i) _ r (139)

qr r r qr r M(i)
r

Eqs. (83) and (84) give the sloshing modes in pitch and yaw as follows.

Sloshing

2 1eo

F +co F -
pi pi pi L

pi

2 -1
P +co r -

yi yi yi L
pi

[ ]UO _ -* +0"(£pi - Lpi)- _j _(j')p Cpp(J)(£pi ) (140)

-, (J)" ]o (£pi pl J qy _y (_pi) (141)

plane) is

The torque which must be supplied by the engine servo system (in the pitch

= M (1) +
TEp yE Tfp

where Tfp represents the friction torque at the gimbal point. This is generally a
combination of viscous and coulomb friction as follows

Tfp = Cvp_) + sgnp CBp p

Using Eq. (105) in combination with the above, we find

TEp (_+MR£R_c) 5" +C 5 + sgn _ + MR£ I_ 5 += p vp p CBp P R o p TLp

where TLp is the load torque which contains all the inertial load torques due to accelera-
tion of the various body modes; viz.

TLp 2 -. +£c)_+_ _ o

-_ [MR(£R £c ) (i)(£T)+(_+MR£R£c)(7(i)(£T) ] _(i)
i + Cpp P p

- MR£R I_o _ °'(i) (£T) q(pi)P
i
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The engine servo torque, TEp, is a complicated function of the input signal,

5cp , and involves the nonlinear electro-hydraulic dynamic effects of the rocket engine
servo system. A linearization procedure may be employed, as described in part 11,

Vol. HI of this series of monographs. The end result is (in Laplace transform

notation)

Engine Servo

(s 3 2 2 2p) 5p (s)+ 2 _ep WepS +Wep S+KcpW e

2 (s + Kbp)

KcpWep 5pc (s) IR TLp (s)
(142)

A similar equation holds for the yaw plane; viz.

(s 3 2 2 2
+ 2 _ey WeyS +WeyS+KcyWey) 5y(S)

2 (s+ Kby)

KcyWey 5y c (s) IR TLy (s)
(143)

The various constants in the above two equations are defined in the aforementioned

reference in terms of the engine servo system parameters.

To complete the description of the short period dynamics it is necessary to

incorporate the equations describing the gyro feedback loops. These generate a feed-

back signal of the following form.

Feedback Signal For Attitude Control

OF = ORG + OpG + % + Oa (144)

_bF = _bRG +_bpG +_b_ +_a (145)

99F = ¢PRG +_PG (146)

where (in Laplace transform notation)
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• Rate Gyro Transfer Function

(s 2 + 2 _Rp CORp s+ WRp ) 0RG

03Rp KRp s 0 + i (r(i)p (_ G) q(pi)]

2

(s 2 + 2 _Ry C°Ry s + WRy } J2RG

= CO
Ry KRy s _ + i (i)y (_G)_i)]

(147)

(148)

(s 2 + 2 _RrCORr s+W2r ) _RG

---- 03 Rr KRr s _ + _ 0) (_ G) q
i r

Position Gyro Transfer Function

(T s+ I)o = o+ _ _(i)(_G)q(i)
p PG i P P

(149)

(150)

(r s+ 1)¢ =_b + _. or(i)(_(3) q(i)
y PG i Y Y

(151)

(r s+ i) =_o+ _ (i)(tG) q(i)
r _°RG i r

(152)

Accelerometer Transfer Function

(s2 2) O 2 K(p) I f_FzoJ s +0J =oJ 2, 0 +0t T
+2_a a a a a a M t A

_F

(s 2 + 2_a
2 2 K(y )

03 S+ _ba ----_0a C°a ) a a Y +£A _" -_T_b
M t

Y Y (£A)
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Angle of Attack Meter (Vane Sensor) Transfer Function

2 2 I_ _(i) _(i)] (156)(s2 +2_ s +4)_b_=_ K_ -_ (£m) qy ]
i Y

Engine Command Signal

= ZAp % (s)(%-

/ KIy \
6y c = KAy _ 1 + ] Gy (s) (¢c _bF)

rc T G r (s) ((Pc - (PF)

(157)

(158)

(159)

The G(s) terms denote the transfer functions of some appropriate filter.

The set of equations (132) through (159) represents the complete description

of the short period dynamics of the vehicle.

3.5 SIMPLIFIED TRANSFER FUNCTIONS

The conventional type of launch vehicle has a high degree of symmetry about

the longitudinal axis, which means that the inertial and aerodynamic cross coupling

terms between pitch, roll, and yaw are negligible. This affords a crucial simplifica-

tion in that pitch, roll, and yaw control systems may be analyzed separately. Beyond

this, very little can be said, in general, regarding further simplifications. A detailed

review of this subject is contained in Sec. 4 of Ref. 2. The validity of various approxi-

mations is generally a function of a particular vehicle, and in this sense various sim-

plifying assumptions can be made, which must however be interpreted with due regard

for inherent limitations. Since this topic is a rather extensive one, a detailed dis-

cussion is relegated to part 1 of Vol. HI in this series, which treats the general

problem of attitude control of launch vehicles in a more comprehensive manner.

The main objective in this monograph has been to derive a fairly complete

representation of the short period dynamics of a launch vehicle, starting from first

principles. In order to analyze the stability properties of the complete system, the

use of a computer is mandatory.
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However, for purposes of investigating the general features of a highly sim-

plified version of the control system, the set of equations (132) through (159) may be

reduced to any desired degree of simplicity. To illustrate this reduction, let us con-

sider the rigid body dynamics of a vehicle whose mass center coincides with the

geometric center. For motion in the pitch plane, we have from Eqs. (133) and (135)

m U _ = _F (160)
o O Z

I g= (161)
YY Y

where T is the perturbation flight path angle defined by

T=0_-e (162)

The quantities 2_F z and 2_My are defined by Eqs. (4:1) and (43) respectively.
If it is assumed that the engine and slosh pendulum masses are negligible compared

to the vehicle mass, then

F = F = M = M --_0
zs zE y yE

We then have*

Fzg -Mtg 0

M = 0
Yg

FzT = T 5c p

MyT T _ 6c e p

1 U2 [ /: 8CN(_) 6 /0L 8CN (_)
F =---p A 3 _ d_ --- (_ -_ ) d_za 2 8_ U 8_ a

= 1 pU2A3 O_
L 8CN( ) L 8CN( )

fO (' -' ) d' --- fO - ('aU

from Eqs. (73), (75), (79), (80), (121), and (127).

*Assuming that the steady-state attitude angle, 0o, is small.
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writing
The term containing U

in the last two equations is generally negligible. By

L 0 CN(__ )

L = 71ou2Aa .[ (16a)
0

and denoting by _a the distance from the geometric center to the center of pressure,

we may write also

L 8CN(t )
1 U 2 f (164)

_._L_ = _ P A3 J0 8c_ (_a- _)d_

Therefore

F = - L_.a
za

and

M = L _ o_
ya c_ a

Consequently, Eqs. (160) and (161) may be expressed as*

MtUo(_-0)=T 6 -L _ -Mtg 0c p

I 0" = T t 6 + Lt c_
yy c c p ol_

The transfer function relating attitude angle to engine deflection angle is now

readily obtained as follows

L /._ T 1

(X O_ C
S+ +

"c MtUo "c MtUo
ols) _

6p(S) ( 3 L 2 __/_c_g)s + MtU s -p_ s+ UO O

where

C

T
C

I
YY

* When the sloshing masses are negligit)le, Mt m O •
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L
Ol O_

YY

Using parameters for large booster vehicles, the following approximations are

valid in the ranges noted.

Near maximum dynamic pressure:

2
6p(S) s - Uo_

At low dynamic pressure:

o(s) Uc

(s) 2
p s

Progressively more complex transfer functions may be developed by including

more effects; i.e., sloshing, engine inertia, bending, etc. As noted earlier, the

development and interpretation of such transfer functions and how they influence the

selection of compensation filters, sensor location, etc. is reserved for a later mono-

graph in this series. *

* See part 1, Vol. HI, "Attitude Control During Launch. "
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